SHORT STRUCTURAL PAPERS

Papers intended for publication under this heading must be in the format prescribed in Notes for Authors, Acta Cryst. (1978), A34, 143-157.

Acta Cryst. (1978). B34, 2281–2284

Structure of Two Forms of Europium Arsenide Eu, As₃*

By Y. WANG, L. D. CALVERT,[†] E. J. GABE AND J. B. TAYLOR

Chemistry Division, National Research Council of Canada, Ottawa K1A 0R9, Canada

(Received 21 February 1978; accepted 23 March 1978)

Abstract. Eu₅As₃ crystallizes in two forms. The lowtemperature form has the Mn₅Si₃ structure, space group $P6_3/mcm$ (No. 193), a = 8.8646 (9), c =7.0811 (4) Å, c/a = 0.7988, $D_m = 6.57$, Z = 2, $D_x = 2$ 6.85 g cm⁻³, with Eu(1) in 4(d), Eu(2) in $\hat{6}(g)$ $[0.74473 (9), 0.74473 (9), \frac{1}{4}]$, As in 6(g) $[0.39050 (15), \frac{1}{4}]$ $0.39050(15), \frac{1}{4}$; the high-temperature form is a disordered variant of the Ca, Pb, structure, space group $P6_{3}mc$ (No. 186), a = 15.2430 (15), c = 7.2517 (2) Å, $c/a = 0.4757, Z = 6, D_x = 6.72 \text{ g cm}^{-3}$. The disorder in the high-temperature form is related to anisotropic thermal motion of Eu(2) parallel to c in the lowtemperature form. Diffractometer data (Mo Ka radiation) yielded R = 0.038 for 349 reflections for the low-temperature form and R = 0.059 for 898 reflections for the high-temperature form, after refinement by full-matrix least squares. Average interatomic distances in the two forms (high-temperature form in parentheses) are Eu-As 3.31 (3.33), and Eu-Eu 3.73 and 3.98 Å (3.78 and 4.00 Å). Comparison with related structures indicates that Eu is close to divalent in both forms.

Introduction. In the Eu–As system two phases have been observed in the region close to 62.5 at.% Eu (Taylor, Calvert, Utsunomiya, Wang & Despault, 1977). The form later identified as having the Ca₅Pb₃ structure was obtained from melts of the composition 62.5 at.% Eu while from melts with compositions >62.5 at.% Eu, the Mn₅Si₃ type was obtained. This crystal-structure study was undertaken to clarify the relationship between these two forms.

Crystals of the Mn_5Si_3 form were obtained from an ingot of overall composition 70 at.% Eu by slow cooling from 1700 K (which is above the liquidus) and mounted in sealed glass capillaries. Sample handling was in an argon-atmosphere dry box with O₂ and H₂O

<1 part per million (Yoshihara, Taylor, Calvert & Despault, 1975). The two forms were characterized by Guinier powder photographs and precession photographs. Reflection conditions for the low-temperature (LT) form were hh0l: l = 2n, and for the hightemperature (HT) form hh2hl: l = 2n. Intensity data were measured on a four-circle diffractometer using monochromatized Mo $K\alpha$ radiation (Table 1). Details of the data treatment and the absorption calculation have been reported elsewhere (Wang, Gabe, Calvert & Taylor, 1976). Crystals of the Ca, Pb, form (later identified as the HT form) were obtained by slowly cooling a melt of composition 62.5 at.% Eu, melting point ~1550 K; experimental details and material analyses are given in Taylor et al. (1977). At the conclusion of the structure refinement, the crystals, polished sections of the source ingots, and standards of known Eu-As composition were analysed by an electron microprobe in the laboratories of the Department of Energy, Mines and Resources (Owens, 1976).

Table 1. Crystal data

	LT form	HT form
Reflections used for cell parameters	52 with $2\theta > 50^{\circ}$	30 with $2\theta > 56^{\circ}$
Structure type	Mn,Si,	Ca, Pb, variant
Cell contents	Z = 2	Z = 6
Volume (Å ³)	481.9	1459-2
Formula weight	984.7	984.7
F(000)	828	2484
Linear absorption coefficient (cm ⁻¹)	434	429
Transmission factors	0.14-0.22	0.10-0.18
Scan range (°)	$0.7 + 0.7 \tan \theta$ + 0.7	$0.6 + 0.7 \tan \theta$ + 0.8
$2\theta_{\max}$ (°)	70	60
Number of unique reflections	475	898
Microprobe analyses		
Crystal	Eu.,As,	*
Grains from ingot	Eu _{5·00 (1)} As _{3·00 (5)} Eu _{5·00 (1)} As _{3·00 (5)}	Eu _{5-00 (1)} As _{3-00 (1)}

* Crystal lost in polishing.

^{*} NRCC No. 16725.

[†] To whom correspondence should be addressed.

The structure of the LT form was refined by fullmatrix least squares, using the Mn₅Si₃ parameters as a starting set (Lander & Brown, 1967). The refinement was based on the average of four equivalent sets of θ - 2θ scan data. The values of R_1 $(\sum \Delta F / \sum F_o)$ and R_2 $[(\sum w |\Delta F|^2 / \sum w F_o)^{1/2}]$ were 0.22 and 0.16 with isotropic and 0.038 and 0.041 with anisotropic temperature factors, and $\sum \Delta w |\Delta F|^2 / (\text{NO-NV}) = 0.80$ for NO = 349 and NV = 11. The atomic and thermal parameters are given in Table 2.*

Refinement of the HT structure was more difficult. Initial attempts, using the parameters of Ca₅Pb₃ (Helleis, Kandler, Leicht, Quiring & Wolfel, 1963), indicated disorder across the mirror planes at $c = \frac{1}{4}$ and $\frac{3}{4}$. Using the fact that the *hk*O data from the LT and HT forms are superimposable, good x and y values were obtained from refinement of the hk0 data alone starting from the parameters of the LT form. Next, each Eu atom at x, \bar{x} , z was split into three with $z = \frac{1}{4}, \frac{1}{4} - z$ and $\frac{1}{4} + z$ and an occupancy of $\frac{1}{3}$. The As atoms were split into two in a similar way and refinement was started with B = 1.0 Å². Gradually, split atoms were eliminated and restrictions removed from refinable parameters. The final results are given in Table 2, where it can be seen that Eu(1) is disordered in the

* Lists of structure factors for both forms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33488 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

. ...

.

threefold manner described above, Eu(2) and Eu(3)have reduced to two positions and all other atoms have single positions. The agreement factors are $R_1 = 0.059$ and $R_2 = 0.045$, and $\sum \Delta w |\Delta F|^2 / (\text{NO-NV}) = 1.98$ for NO = 898 and NV = 34. The final difference map does not show any significant feature, but the temperature and occupancy factors show a rather wide spread. This is perhaps not too surprising in view of the amount of disorder and the large absorption corrections applied.

The LT form has the Mn₅Si₃ structure which has been discussed extensively and thus needs no detailed description (Hohnke & Parthé, 1969; Pearson, 1972; Martínez-Ripoll & Brauer, 1973; Wang et al., 1976; Raman & Ghassem, 1973). The interatomic distances are listed in Table 3. The layer structure can be described in Schlafli symbols (Pearson, 1972) as a 6³ net [Eu(1)] at $z = 0,\frac{1}{2}$ plus a $6^23^3 + 6^23$ [1:1, Eu(2) and As] net at $z = \frac{1}{4} \frac{3}{4}$. The most significant feature is the anisotropic motion of the Eu(2) atom parallel to c. The structure of the HT form is a disordered variant of the Ca_sPb₃ structure, lacking the mirror planes of the LT form and with a distinctly longer c axis (Table 1). The Eu(1) atom of the LT form becomes the Eu(4) atom of the HT form, retaining the same 6³ net (medium lines, Fig. 1). The nets of the LT form at $z = \frac{1}{4}, \frac{3}{4}$ are now buckled. The net at $z \sim \frac{1}{4}$ (dotted lines, Fig. 1) is composed of three different groups, centred on the points $0, 0, \frac{1}{4}; \frac{1}{3}, \frac{2}{3}, \frac{1}{4};$ and $\frac{2}{3}, \frac{1}{3}, \frac{1}{4}$. The group at $0, 0, \frac{1}{4}$ is composed of Eu(2) + As(1) atoms, that at $\frac{1}{3}, \frac{2}{3}, \frac{1}{4}$ of Eu(3) + As(3) atoms and that at $\frac{2}{3}, \frac{1}{3}, \frac{1}{4}$ of Eu(1) +

Table 2. Atomic parameters for Eu₅As₃

Low-temperature form

$T = \exp[-(h^2\beta_{11} + \ldots + hk\beta_{12} + \ldots) \times 10^{-4}].$							
	x	у	Z	$\beta_{11} = \beta_{22}$	β_{33}	β_{12}	$B(\dot{A}^2)$
Eu(1) 4(d)	$\frac{1}{3}$	2	0	63 (1)	48 (1)	$\beta_{11}/2$	1.1 (1)
Eu(2) 6(g)	0.74473 (9)	x	$\frac{1}{4}$	36 (1)	305 (3)	49 (2)	1.3 (1)
As 6(g)	0.39050 (15)	x	14	27 (1)	85 (3)	32 (3)	0.8 (2)

High-temperature form

All atoms in $6(c)$ $(x,-x,z)$, except Eu(4) in $12(d)$ (x,y,z) .							
	x	У	z	Occupancy	B (Å ²)	$\langle x \rangle$ ‡	$\langle z \rangle$ ‡
Eu(1)	0.4166 (4)	-x	0.1783 (16)	0.44 (2)	0.8(2)		
Eu(1)'	0.4167 (5)	-x	0.2551 (14)	0.39 (2)	0.5(2)	0.4170	0.2428
Eu(1)"	0-4183 (8)	-x	0.3410 (27)	0.24 (1)	1.5 (3)		
Eu(2)	0.9134 (3)	-x	0.6878 (12)	0.71 (2)	0.8 (1)	0.9145	0.7079
Eu(2)'	0.9177 (7)	-x	0.7701 (23)	0.23 (2)	0.5 (3)	0.9145	0.1019
Eu(3)	0·2497 (4)	-x	0.7909 (14)	0.58 (3)	0.6 (1)	0.2497	0.8165
Eu(3)'	0·2498 (4)	-x	0.8462 (15)	0.50 (3)	1.5 (2)	0.2497	0.8103
Eu(4)	0.3435 (2)	0.0163 (1)	0*	1.0†	1.24 (3)		
As(1)	0.1306 (6)	-x	0.7500 (12)	0.98 (3)	0.7 (2)		
As(2)	0.2022 (4)	-x	0.2177 (13)	0.88 (3)	0.4 (2)		
As(3)	0-4635 (6)	-x	0.7511 (11)	1.10 (3)	0.9 (2)		

· E (A) · 10(D)

* Fixed to establish origin.

† Held constant.

[‡] Weighted average values.

Table 3. Interatomic distances (Å) for Eu₅As₃

Low-temperature form

Eu(1)-2 Eu(1) -6 Eu(2) -6 As As-2 Eu(2) -1 Eu(2) -4 Eu(1) -2 Eu(2) -1 As	3.5406 (2) 3.7932 (5) 3.2595 (5) 3.0447 (11) 3.1401 (16) 3.2595 (5) 3.7380 (5) 4.038 (1)	Eu(2)-4 Eu(1) -2 Eu(2) -4 Eu(2) -2 As -1 As -2 As	3.7932 (5) 3.9195 (4) 4.2019 (6) 3.0447 (11) 3.1401 (16) 3.7380 (5)
High-temperature	form (σ 's all <0.	.003)	
Eu(1)-2 Eu(4)	3.699	Eu(2)-2 Eu(4)	3.748
-2 Eu(3)	3.799	-2 Eu(2)	3.910
-2 Eu(1)	3.826	-2 Eu(2)	3.910
-2 Eu(4)	3.898	-4 Eu(2)	4.271
-2 Eu(3)	4.710	-2 As(1)	3.049
-2 As(2)	3.042	-1 As(2)	3.082
-1 As(3)	3.156	-1 As(1)	3.528
-1 As(3)	3.771	-1 As(1)	4.108
-1 As(3)	3.885		
		Eu(4)-2 Eu(4)	3.651
Eu(3)-2 Eu(1)	3.800	-1 Eu(1)	3.699
-2 Eu(4)	3.802	-1 Eu(2)	3.748
-2 Eu(3)	3.825	-1 Eu(3)	3.802
-2 Eu(4)	3.888	-1 Eu(3)	3.888
-2 Eu(1)	4.710	-1 Eu(1)	3.898
$-2 \operatorname{As}(3)$	3.153	-1 Eu(2)	3.910
-1 As(2)	3.168	$-1 \operatorname{As}(1)$	3.175
-1 As(1)	3.181	-1 As(3)	3.190
-1 As(2)	4.520	-1 As(2)	3.233
		-1 As(3)	3.309
		-1 As(2)	3.324
		-1 As(1)	3-401
As(1)-2 Eu(2)	3.049	As(2)-2 Eu(1)	3.042
-1 Eu(3)	3.181	-1 Eu(2)	3.042
-2 Eu(4)	3.175	-1 Eu(2) -1 Eu(3)	3.168
-1 Eu(2)	3.528	-2 Eu(3)	3.233
-2 Eu(2)	3.401	-2 Eu(4) -2 Eu(4)	3.324
-1 Eu(2)	4.108	-1 Eu(3)	4.520
-1 As(2)	3.883	-1 As(1)	3.883
-1 As(2)	4.298	-1 As(1)	4.298
x ·····(2)	. 270		
		As(3) - 2 Eu(3)	3.053
		-1 Eu(1)	3.156
		-2 Eu(4)	3.190
		-2 Eu(4)	3.309
		-1 Eu(1)	3.771
		-1 Eu(1)	3.885
		-2 As(3)	4.106

As(2). Table 3 lists the interatomic distances for the HT phase, based on the weighted average coordinates of the full disordered structure (Table 2). The separation of the sites Eu(1) and Eu(1)'' is 1.18 Å, that for Eu(2) and Eu(2)' is 0.61 Å and that for Eu(3) and Eu(3)' is 0.40 Å. Mean values of Eu—Eu and Eu—As distances are listed in Table 4. Values for the full disordered structure were calculated and compared with those of Table 3, but as no significant differences were noted they are not given. The detailed coordinations are essentially those of the Mn₃Si₃ type.

Discussion. Taking the structural results and the microprobe results together with the phase-analytical results (Taylor *et al.*, 1977) it was concluded that the two phases were HT and LT forms of essentially stoichiometric Eu_5As_3 . Values of Eu-Eu and Eu-As distances (Table 4) are not greatly changed between the two forms. The LT form has two distinct average Eu-Eu distances, 3.73 and 3.97 Å, centred on Eu(1) and Eu(2) respectively, and this feature is clearly retained in the HT form with an average distance of 3.78 Å centred on Eu(4), as compared with 3.99, 4.01 and 4.02 Å centred on Eu(1), Eu(2) and Eu(3) respectively. The type structure, Mn_5Si_3 , also has two different types of Mn atoms (Lander & Brown, 1967),

Table 4. Average interatomic distances (Å)

Low-temp	CN erature form	Eu—Eu	Eu-As	Domain volume*
Eu(1)	14	3.730	3.260	28.4
Eu(2)	15	3.982	3.341	34.0
As	9 + 2	-	3.305	28.0
High-temp	erature form			
Eu(1)	15	3-986	3.379	34.1
Eu(2)	15	4.022	3.363	34.5
Eu(3)	15	4.005	3.395	33.9
Eu(4)	14	3.781	3.272	29.3
As(1)	9 + 2	_	3.341	28.3
As(2)	9 + 2	-	3.330	28.3
As(3)	9 + 2	_	3.324	28.4

* Frank & Kasper (1958).

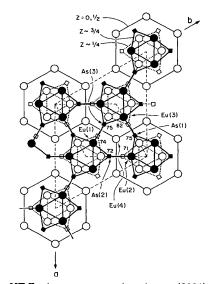


Fig. 1. The HT Eu_sAs_3 structure projected on to (0001). The Eu(4) atoms are plotted at averaged x, y coordinates. The z coordinates of one set of atoms are marked. Dashed lines outline the unit cells of the HT and LT forms.

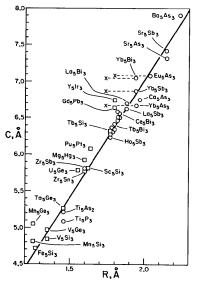


Fig. 2. The c axes of A_5B_3 compounds plotted against the CN 12 metallic radius of the A atoms. The straight line ($c = 0.56 + 3.23R_A$) is a least-squares fit for compounds with B = P, As, Sb, Bi (open circles). Squares mark representative examples of other A_5B_3 phases. In the central region only a few points are labelled.

the electron density of the Mn(1) atom in 4(d) being found to be spherical and that of Mn(2) nonspherical, as is also its spin density. Observed values for Eu²⁺-Eu²⁺ distances in similar compounds are 4.19 Å in Eu₃As₄ (Smart, Calvert & Taylor, 1978), 4.20 Å in Eu₂As₂ (Wang, Gabe, Calvert & Taylor, 1977), 3.93 Å in Eu₄As₂O (Wang, Calvert, Gabe & Taylor, 1977), and for Eu³⁺-Eu³⁺ 3.76 Å in Eu₄As₄ (Wang, Calvert, Gabe & Taylor, 1978). It has been argued (Taylor et al., 1977), on the basis of cell-volume plots and nearneighbour diagrams, that Eu₅As₃ contains divalent Eu in conformity with Ca₅As₃, Sr₅As₃ and Ba₅As₃. The LT and HT forms of Eu₅As₃ contain AsEu₆ trigonal prisms with virtually the same average As-Eu and Eu-Eu distances. The most significant difference is the short Eu-Eu distance (= c/2) changing from 3.54 to 3.65 Å with some distortion of the prisms. This change appears to be directly associated with the high thermal motion of Eu(2) in the LT form, becoming disorder in Eu(1), Eu(2) and Eu(3) in the HT form.

 A_5B_3 structures (B = P, As, Sb or Bi), with the Mn₅Si₃ structure, show a nearly linear relation between

the c axis and the radius of the A atom (Fig. 2), which extends from Ti₅P₃ (c = 5.09 Å) to Ba₅As₃ (c = 7.90Å); c/a values are from 0.69 (Zr_sSb_3) to 0.83 (Ba_sAs_3) and radius ratios R_B/R_A are from 0.68 (Eu₅As₃) to 0.99 (Zr₅Sb₃). The elements Eu and Yb when plotted with their divalent radius give a better fit. Thus the Aatom radius is a significant factor, and in the nearneighbour diagram for Mn₅Si₃ structures [p. 66 of Pearson (1972) and Fig. 3 of Taylor et al. (1977)] the structures occur in a band parallel to the A-A contacts, with a nearly constant A-A compression, down to values approximately equivalent to the single-bond radius (Hohnke & Parthé, 1969). Where a structure requires that the A-A distance (=c/2) be much too compressed, the Mn₅Si₃ structure is replaced by the Y₅Bi₃ structure (Wang et al., 1976).

References

- FRANK, F. C. & KASPER, J. S. (1958). Acta Cryst. 11, 184– 190.
- HELLEIS, O., KANDLER, H., LEICHT, E., QUIRING, W. & WOLFEL, E. (1963). Z. Anorg. Chem. 320, 86-100.
- HOHNKE, D. & PARTHÉ, E. (1969). J. Less-Common Met. 17, 291-296.
- LANDER, S. H. & BROWN, P. J. (1967). Philos. Mag. 16, 521-542.
- MARTÍNEZ-RIPOLL, M. & BRAUER, G. (1973). Acta Cryst. B29, 2717-2720.
- Owens, D. R. (1976). Mineral Science Laboratory Rep. No. MRP/MSL 76-305 (TR).
- PEARSON, W. B. (1972). The Crystal Chemistry and Physics of Metals and Alloys, pp. 3, 53, 66, 718. Toronto: John Wiley.
- RAMAN, A. & GHASSEM, H. (1973). J. Less-Common Met. 30, 185–197.
- SMART, M. L., CALVERT, L. D. & TAYLOR, J. B. (1978). To be published.
- TAYLOR, J. B., CALVERT, L. D., UTSUNOMIYA, T., WANG, Y. & DESPAULT, J. G. (1977). J. Less-Common Met. 57, 51– 63.
- WANG, Y., CALVERT, L. D., GABE, E. J. & TAYLOR, J. B. (1977). Acta Cryst. B33, 3122–3125.
- WANG, Y., CALVERT, L. D., GABE, E. J. & TAYLOR, J. B. (1978). Acta Cryst. B34, 1962–1965.
- WANG, Y., GABE, E. J., CALVERT, L. D. & TAYLOR, J. B. (1976). Acta Cryst. B32, 1440–1445.
- WANG, Y., GABE, E. J., CALVERT, L. D. & TAYLOR, J. B. (1977). Acta Cryst. B33, 131–133.
- YOSHIHARA, K., TAYLOR, J. B., CALVERT, L. D. & DESPAULT, J. G. (1975). J. Less-Common Met. 41, 329-337.