SHORT STRUCTURAL PAPERS

Papers intended for publication under this heading must be in the format prescribed in Notes for Authors, Acta Cryst. (1978), A34, 143157.

Acta Cryst. (1978). B34, 2281-2284

Structure of Two Forms of Europium Arsenide $\mathrm{Eu}_{5} \mathbf{A s}_{3}{ }^{*}$

By Y. Wang, L. D. Calvert, \dagger E. J. Gabe and J. B. Taylor
Chemistry Division, National Research Council of Canada, Ottawa K1A OR9, Canada

(Received 21 February 1978; accepted 23 March 1978)

Abstract

Eu}_{5} \mathrm{As}_{3}\) crystallizes in two forms. The lowtemperature form has the $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ structure, space group $\mathrm{Pb}_{3} / \mathrm{mcm}$ (No. 193), $a=8.8646$ (9), $c=$ 7.0811 (4) $\AA, c / a=0.7988, D_{m}=6.57, Z=2, D_{x}=$ $6.85 \mathrm{~g} \mathrm{~cm}^{-3}$, with $\mathrm{Eu}(1)$ in $4(d)$, $\mathrm{Eu}(2)$ in $6(g)$ [0.74473 (9), 0.74473 (9), $\frac{1}{4}$, As in $6(\mathrm{~g})$ [0.39050 (15), 0.39050 (15), $\frac{1}{4}$]; the high-temperature form is a disordered variant of the $\mathrm{Ca}_{5} \mathrm{~Pb}_{3}$ structure, space group $P 6_{3} m c$ (No. 186), $a=15.2430$ (15), $c=7.2517$ (2) \AA, $c / a=0.4757, Z=6, D_{x}=6.72 \mathrm{~g} \mathrm{~cm}^{-3}$. The disorder in the high-temperature form is related to anisotropic thermal motion of $\mathrm{Eu}(2)$ parallel to c in the lowtemperature form. Diffractometer data (Mo $K \alpha$ radiation) yielded $R=0.038$ for 349 reflections for the low-temperature form and $R=0.059$ for 898 reflections for the high-temperature form, after refinement by full-matrix least squares. Average interatomic distances in the two forms (high-temperature form in parentheses) are $\mathrm{Eu}-\mathrm{As} 3.31$ (3.33), and $\mathrm{Eu}-\mathrm{Eu} 3.73$ and $3.98 \AA(3.78$ and $4.00 \AA$). Comparison with related structures indicates that Eu is close to divalent in both forms.

Introduction. In the Eu-As system two phases have been observed in the region close to $62.5 \mathrm{at} . \% \mathrm{Eu}$ (Taylor, Calvert, Utsunomiya, Wang \& Despault, 1977). The form later identified as having the $\mathrm{Ca}_{5} \mathrm{~Pb}_{3}$ structure was obtained from melts of the composition $62.5 \mathrm{at} . \%$ Eu while from melts with compositions $>62.5 \mathrm{at} . \% \mathrm{Eu}$, the $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ type was obtained. This crystal-structure study was undertaken to clarify the relationship between these two forms.

Crystals of the $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ form were obtained from an ingot of overall composition $70 \mathrm{at} . \% \mathrm{Eu}$ by slow cooling from 1700 K (which is above the liquidus) and mounted in sealed glass capillaries. Sample handling was in an argon-atmosphere dry box with O_{2} and $\mathrm{H}_{2} \mathrm{O}$

[^0]<1 part per million (Yoshihara, Taylor, Calvert \& Despault, 1975). The two forms were characterized by Guinier powder photographs and precession photographs. Reflection conditions for the low-temperature (LT) form were $h \bar{h} 0 l: l \equiv 2 n$, and for the hightemperature (HT) form $h h \overline{2 h} l: l=2 n$. Intensity data were measured on a four-circle diffractometer using monochromatized Mo Ka radiation (Table 1). Details of the data treatment and the absorption calculation have been reported elsewhere (Wang, Gabe, Calvert \& Taylor, 1976). Crystals of the $\mathrm{Ca}_{5} \mathrm{~Pb}_{3}$ form (later identified as the HT form) were obtained by slowly cooling a melt of composition $62.5 \mathrm{at} . \% \mathrm{Eu}$, melting point $\sim 1550 \mathrm{~K}$; experimental details and material analyses are given in Taylor et al. (1977). At the conclusion of the structure refinement, the crystals, polished sections of the source ingots, and standards of known Eu -As composition were analysed by an electron microprobe in the laboratories of the Department of Energy, Mines and Resources (Owens, 1976).

Table 1. Crystal data

	LT form	HT form
Reflections used for cell parameters	52 with $2 \theta>50^{\circ}$	30 with $2 \theta>56^{\circ}$
Structure type	$\mathrm{Mn}_{5} \mathrm{Si}_{3}$	$\mathrm{Ca}_{5} \mathrm{~Pb}_{3}$ variant
Cell contents	$Z=2$	$Z=6$
Volume (\AA^{3})	481.9	1459.2
Formula weight	984.7	984.7
$F(000)$	828	2484
Linear absorption coefficient (cm^{-1})	434	429
Transmission factors	0.14-0.22	0.10-0.18
Scan range (${ }^{\circ}$)	$\begin{aligned} & 0.7+0.7 \tan \theta \\ & +0.7 \end{aligned}$	$\begin{aligned} & 0.6+0.7 \tan \theta \\ & +0.8 \end{aligned}$
$2 \theta_{\text {max }}\left({ }^{\circ}\right.$)	70	$60^{+0.8}$
Number of unique reflections	475	898
Microprobe analyses		
Crystal	$\mathrm{Eu}_{5 \cdot 00(1)} \mathrm{As}_{3 \cdot 00(5)}$	*
Grains from ingot	$\mathrm{Eu}_{5 \cdot 00(1)} \mathrm{As}_{3 \cdot 00(5)}^{3.00(5)}$	$\mathrm{Eu}_{5 \cdot 00(1)} \mathrm{As}_{3 \cdot 00(1)}$

The structure of the LT form was refined by fullmatrix least squares, using the $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ parameters as a starting set (Lander \& Brown, 1967). The refinement was based on the average of four equivalent sets of θ 2θ scan data. The values of $R_{1}\left(\sum \Delta F / \sum F_{o}\right)$ and R_{2} $\left[\left(\sum w|\Delta F|^{2} / \sum w F_{0}\right)^{1 / 2}\right]$ were 0.22 and 0.16 with isotropic and 0.038 and 0.041 with anisotropic temperature factors, and $\sum \Delta w|\Delta F|^{2} /(\mathrm{NO}-\mathrm{NV})=0.80$ for $\mathrm{NO}=$ 349 and $N V=11$. The atomic and thermal parameters are given in Table 2.*

Refinement of the HT structure was more difficult. Initial attempts, using the parameters of $\mathrm{Ca}_{5} \mathrm{~Pb}_{3}$ (Helleis, Kandler, Leicht, Quiring \& Wolfel, 1963), indicated disorder across the mirror planes at $c=\frac{1}{4}$ and $\frac{3}{4}$. Using the fact that the $h k 0$ data from the LT and HT forms are superimposable, good x and y values were obtained from refinement of the $h k 0$ data alone starting from the parameters of the LT form. Next, each Eu atom at x, \bar{x}, z was split into three with $z=\frac{1}{4}, \frac{1}{4}-z$ and $\frac{1}{4}+z$ and an occupancy of $\frac{1}{3}$. The As atoms were split into two in a similar way and refinement was started with $B=1.0 \AA^{2}$. Gradually, split atoms were eliminated and restrictions removed from refinable parameters. The final results are given in Table 2, where it can be seen that $\mathrm{Eu}(1)$ is disordered in the

[^1]threefold manner described above, $\mathrm{Eu}(2)$ and $\mathrm{Eu}(3)$ have reduced to two positions and all other atoms have single positions. The agreement factors are $R_{1}=0.059$ and $R_{2}=0.045$, and $\sum \Delta w|\Delta F|^{2} /(\mathrm{NO}-\mathrm{NV})=1.98$ for $\mathrm{NO}=898$ and $\mathrm{NV}=34$. The final difference map does not show any significant feature, but the temperature and occupancy factors show a rather wide spread. This is perhaps not too surprising in view of the amount of disorder and the large absorption corrections applied.
The LT form has the $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ structure which has been discussed extensively and thus needs no detailed description (Hohnke \& Parthé, 1969; Pearson, 1972; Martínez-Ripoll \& Brauer, 1973; Wang et al., 1976; Raman \& Ghassem, 1973). The interatomic distances are listed in Table 3. The layer structure can be described in Schlafli symbols (Pearson, 1972) as a 6^{3} net $[\mathrm{Eu}(1)]$ at $z=0, \frac{1}{2}$ plus a $6^{2} 3^{3}+6^{2} 3[1: 1, \mathrm{Eu}(2)$ and As] net at $z=\frac{1}{4}, \frac{3}{4}$. The most significant feature is the anisotropic motion of the $\mathrm{Eu}(2)$ atom parallel to c . The structure of the HT form is a disordered variant of the $\mathrm{Ca}_{5} \mathrm{~Pb}_{3}$ structure, lacking the mirror planes of the LT form and with a distinctly longer c axis (Table 1). The $\mathrm{Eu}(1)$ atom of the LT form becomes the $\mathrm{Eu}(4)$ atom of the HT form, retaining the same 6^{3} net (medium lines, Fig. 1). The nets of the LT form at $z=\frac{1}{4}, \frac{3}{4}$ are now buckled. The net at $z \sim \frac{1}{4}$ (dotted lines, Fig. 1) is composed of three different groups, centred on the points $0,0, \frac{1}{4} ; \frac{1}{3}, \frac{2}{3}, \frac{1}{4} ;$ and $\frac{2}{3}, \frac{1}{3}, \frac{1}{4}$. The group at $0,0, \frac{1}{4}$ is composed of $\mathrm{Eu}(2)+\mathrm{As}(1)$ atoms, that at $\frac{1}{3}, \frac{2}{3}, \frac{1}{4}$ of $\mathrm{Eu}(3)+\mathrm{As}(3)$ atoms and that at $\frac{2}{3}, \frac{1}{3}, \frac{4}{4}$ of $\mathrm{Eu}(1)+$ Table 2. Atomic parameters for $\mathrm{Eu}_{5} \mathrm{As}_{3}$

Low-temperature form

	$T=\exp \left[-\left(h^{2} \beta_{11}+\ldots+h k \beta_{12}+\ldots\right) \times 10^{-4}\right]$.						
	x	y	z	$\beta_{11}=\beta_{22}$	β_{33}	β_{12}	$B\left(\AA^{2}\right)$
$\mathrm{Eu}(1) 4(d)$	$\frac{1}{3}$	$\frac{2}{3}$	0	63 (1)	48 (1)	$\beta_{11} / 2$	$1 \cdot 1$ (1)
$\mathrm{Eu}(2) 6 \mathrm{~g})$	0.74473 (9)	x	$\frac{1}{4}$	36 (1)	305 (3)	49 (2)	1.3 (1)
As 6 (g)	0.39050 (15)	x	$\frac{1}{4}$	27 (1)	85 (3)	32 (3)	0.8 (2)

High-temperature form

	x	y	z	Occupancy	$B\left(\AA^{2}\right)$	$\langle x\rangle \ddagger$	$\langle z\rangle \ddagger$
Eu(1)	0.4166 (4)	$-x$	0.1783 (16)	0.44 (2)	$0.8(2)$		
$\mathrm{Eu}(1)^{\prime}$	0.4167 (5)	$-x$	0.2551 (14)	0.39 (2)	0.5 (2)	0.4170	0.2428
$\mathrm{Eu}(1)^{\prime \prime}$	0.4183 (8)	$-x$	0.3410 (27)	0.24 (1)	1.5 (3)		
Eu(2)	0.9134 (3)	$-x$	0.6878 (12)	0.71 (2)	0.8 (1)	0.9145	0.7079
$\mathrm{Eu}(2){ }^{\prime}$	0.9177 (7)	$-x$	0.7701 (23)	0.23 (2)	0.5 (3))	0.9145	$0 \cdot 7079$
$\mathrm{Eu}(3)$	0.2497 (4)	$-x$	0.7909 (14)	$0 \cdot 58$ (3)	$0 \cdot 6$ (1)	0.2497	0.8165
$\mathrm{Eu}(3)^{\prime}$	$0 \cdot 2498$ (4)	$-x$	0.8462 (15)	$0 \cdot 50$ (3)	1.5 (2)	0.2497	$0 \cdot 8165$
Eu(4)	0.3435 (2)	0.0163 (1)	0^{*}	$1.0 \dagger$	1.24 (3)		
As(1)	0.1306 (6)	- x	0.7500 (12)	0.98 (3)	0.7 (2)		
As(2)	0.2022 (4)	-x	0.2177 (13)	0.88 (3)	0.4 (2)		
As(3)	0.4635 (6)	-x	0.7511 (11)	$1 \cdot 10$ (3)	0.9 (2)		

[^2]Table 3. Interatomic distances (\AA) for $\mathrm{Eu}_{5} \mathrm{As}_{3}$

Low-temperature form

$\mathrm{Eu}(1)-2 \mathrm{Eu}(1)$	$3.5406(2)$	$\mathrm{Eu}(2)-4 \mathrm{Eu}(1)$	$3.7932(5)$
$-6 \mathrm{Eu}(2)$	$3.7932(5)$	$-2 \mathrm{Eu}(2)$	$3.9195(4)$
-6 As	$3.2595(5)$	$-4 \mathrm{Eu}(2)$	$4.2019(6)$
		-2 As	$3.0447(11)$
$\mathrm{As}-2 \mathrm{Eu}(2)$	$3.0447(11)$	-1 As	$3.1401(16)$
$-1 \mathrm{Eu}(2)$	$3.1401(16)$	-2 As	$3.7380(5)$

High-temperature form (σ 's all <0.003)

$\mathrm{Eu}(1)-2 \mathrm{Eu}(4)$	3.699	$\mathrm{Eu}(2)-2 \mathrm{Eu}(4)$	3.748
$-2 \mathrm{Eu}(3)$	3.799	$-2 \mathrm{Eu}(2)$	3.910
-2 Eu(1)	3.826	-2 Eu(4)	3.910
-2 Eu(4)	3.898	-4 Eu(2)	4.271
-2 Eu(3)	4.710	-2 As(1)	3.049
-2 As(2)	3.042	- $1 \mathrm{As}(2)$	3.082
-1 As(3)	3.156	-1 As(1)	3.528
-1 As (3)	3.771	-1 As(1)	$4 \cdot 108$
-1 As(3)	3.885		
		$\mathrm{Eu}(4)-2 \mathrm{Eu}(4)$	$3 \cdot 651$
$\mathrm{Eu}(3)-2 \mathrm{Eu}(1)$	3.800	$-1 \mathrm{Eu}(1)$	3.699
-2 Eu(4)	3.802	-1Eu(2)	3.748
-2Eu(3)	3.825	$-1 \mathrm{Eu}(3)$	3.802
-2 Eu(4)	3.888	-1 Eu(3)	3.888
-2 Eu(1)	4.710	-1 Eu(1)	3.898
-2 As(3)	$3 \cdot 153$	$-1 \mathrm{Eu}(2)$	3.910
-1 As(2)	3.168	$-1 \mathrm{As}(1)$	$3 \cdot 175$
-1 As(1)	$3 \cdot 181$	-1 As(3)	$3 \cdot 190$
-1 As(2)	4.520	-1 As(2)	3.233
		-1 As(3)	3.309
		$-1 \mathrm{As}(2)$	3.324
		$-1 \mathrm{As}(1)$	3.401
As(1)-2 Eu(2)	3.049	As(2)-2 Eu(1)	3.042
-1Eu(3)	3.181	-1Eu(2)	3.082
-2Eu(4)	3.175	-1Eu(3)	$3 \cdot 168$
-1 Eu(2)	3.528	-2 Eu(4)	3.233
-2 Eu(4)	3.401	-2 Eu(4)	3.324
-1 Eu(2)	$4 \cdot 108$	-1 Eu(3)	4.520
-1 As(2)	$3 \cdot 883$	$-1 \mathrm{As}(1)$	3.883
-1 As(2)	$4 \cdot 298$	-1 As(1)	4.298
		As(3)-2 Eu(3)	3.053
		-1 Eu(1)	$3 \cdot 156$
		-2 Eu(4)	$3 \cdot 190$
		-2 Eu(4)	3.309
		-1 Eu(1)	3.771
		-1 Eu(1)	3.885
		-2 As(3)	4. 106

As(2). Table 3 lists the interatomic distances for the HT phase, based on the weighted average coordinates of the full disordered structure (Table 2). The separation of the sites $\operatorname{Eu}(1)$ and $E u(1)^{\prime \prime}$ is $1 \cdot 18 \AA$, that for $E u(2)$ and $E u(2)^{\prime}$ is $0.61 \AA$ and that for $E u(3)$ and $\mathrm{Eu}(3)^{\prime}$ is $0.40 \AA$. Mean values of $\mathrm{Eu}-\mathrm{Eu}$ and $\mathrm{Eu}-\mathrm{As}$ distances are listed in Table 4. Values for the full disordered structure were calculated and compared with those of Table 3, but as no significant differences were noted they are not given. The detailed coordinations are essentially those of the $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ type.

Discussion. Taking the structural results and the microprobe results together with the phase-analytical results (Taylor et al., 1977) it was concluded that the two phases were HT and LT forms of essentially stoichiometric $\mathrm{Eu}_{5} \mathrm{As}_{3}$. Values of $\mathrm{Eu}-\mathrm{Eu}$ and $\mathrm{Eu}-\mathrm{As}$ distances (Table 4) are not greatly changed between the two forms. The LT form has two distinct average Eu-Eu distances, 3.73 and $3.97 \AA$, centred on $\mathrm{Eu}(1)$ and $\mathrm{Eu}(2)$ respectively, and this feature is clearly retained in the HT form with an average distance of $3.78 \AA$ centred on $\mathrm{Eu}(4)$, as compared with $3.99,4.01$ and $4.02 \AA$ centred on $\mathrm{Eu}(1), \mathrm{Eu}(2)$ and $\mathrm{Eu}(3)$ respectively. The type structure, $\mathrm{Mn}_{5} \mathrm{Si}_{3}$, also has two different types of Mn atoms (Lander \& Brown, 1967),

Table 4. Average interatomic distances (\AA)

	CN		
Low-temperature form		Eu-Eu \quad Eu-As	Domain
:---:			
volume*			

Fig. 1. The $\mathrm{HT} \mathrm{Eu}{ }_{5} \mathrm{As}_{3}$ structure projected on to (0001). The $\mathrm{Eu}(4)$ atoms are plotted at averaged x, y coordinates. The z coordinates of one set of atoms are marked. Dashed lines outline the unit cells of the HT and LT forms.

Fig. 2. The c axes of $A_{5} B_{3}$ compounds plotted against the CN 12 metallic radius of the A atoms. The straight line ($c=0.56+$ $3 \cdot 23 R_{A}$) is a least-squares fit for compounds with $B=\mathrm{P}, \mathrm{As}, \mathrm{Sb}$, Bi (open circles). Squares mark representative examples of other $A_{5} B_{3}$ phases. In the central region only a few points are labelled.
the electron density of the $\mathrm{Mn}(1)$ atom in $4(d)$ being found to be spherical and that of $\mathrm{Mn}(2)$ nonspherical, as is also its spin density. Observed values for $\mathrm{Eu}^{2+}-\mathrm{Eu}^{2+}$ distances in similar compounds are 4.19 \AA in $\mathrm{Eu}_{3} \mathrm{As}_{4}$ (Smart, Calvert \& Taylor, 1978), 4 . $20 \AA$ in $\mathrm{Eu}_{2} \mathrm{As}_{2}$ (Wang, Gabe, Calvert \& Taylor, 1977), $3.93 \AA$ in $\mathrm{Eu}_{4} \mathrm{As}_{2} \mathrm{O}$ (Wang, Calvert, Gabe \& Taylor, 1977), and for $\mathrm{Eu}^{3+}-\mathrm{Eu}^{3+} 3.76 \AA$ in $\mathrm{Eu}_{5} \mathrm{As}_{4}$ (Wang, Calvert, Gabe \& Taylor, 1978). It has been argued (Taylor et al., 1977), on the basis of cell-volume plots and nearneighbour diagrams, that $\mathrm{Eu}_{5} \mathrm{As}_{3}$ contains divalent Eu in conformity with $\mathrm{Ca}_{5} \mathrm{As}_{3}, \mathrm{Sr}_{5} \mathrm{As}_{3}$ and $\mathrm{Ba}_{5} \mathrm{As}_{3}$. The LT and HT forms of $\mathrm{Eu}_{5} \mathrm{As}_{3}$ contain AsEu ${ }_{6}$ trigonal prisms with virtually the same average As-Eu and $\mathrm{Eu}-\mathrm{Eu}$ distances. The most significant difference is the short $\mathrm{Eu}-\mathrm{Eu}$ distance ($=c / 2$) changing from 3.54 to $3.65 \AA$ with some distortion of the prisms. This change appears to be directly associated with the high thermal motion of $\mathrm{Eu}(2)$ in the LT form, becoming disorder in $\mathrm{Eu}(1)$, $\mathrm{Eu}(2)$ and $\mathrm{Eu}(3)$ in the HT form.
$A_{5} B_{3}$ structures ($B=\mathrm{P}, \mathrm{As}, \mathrm{Sb}$ or Bi), with the $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ structure, show a nearly linear relation between
the c axis and the radius of the A atom (Fig. 2), which extends from $\mathrm{Ti}_{5} \mathrm{P}_{3}(c=5.09 \AA)$ to $\mathrm{Ba}_{5} \mathrm{As}_{3}(c=7.90$ $\AA) ; c / a$ values are from $0.69\left(\mathrm{Zr}_{5} \mathrm{Sb}_{3}\right)$ to $0.83\left(\mathrm{Ba}_{5} \mathrm{As}_{3}\right)$ and radius ratios R_{B} / R_{A} are from $0.68\left(\mathrm{Eu}_{5} \mathrm{As}_{3}\right)$ to $0.99\left(\mathrm{Zr}_{5} \mathrm{Sb}_{3}\right)$. The elements Eu and Yb when plotted with their divalent radius give a better fit. Thus the A atom radius is a significant factor, and in the nearneighbour diagram for $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ structures [p. 66 of Pearson (1972) and Fig. 3 of Taylor et al. (1977)] the structures occur in a band parallel to the $A-A$ contacts, with a nearly constant $A-A$ compression, down to values approximately equivalent to the single-bond radius (Hohnke \& Parthé, 1969). Where a structure requires that the $A-A$ distance $(=c / 2)$ be much too compressed, the $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ structure is replaced by the $\mathrm{Y}_{5} \mathrm{Bi}_{3}$ structure (Wang et al., 1976).

References

Frank, F. C. \& Kasper, J. S. (1958). Acta Cryst. 11, 184190.

Helleis, O., Kandler, H., Leicht, E., Quiring, W. \& Wolfel, E. (1963). Z. Anorg. Chem. 320, 86-100.
Hohnke, D. \& Parthé, E. (1969). J. Less-Common Met. 17, 291-296.
Lander, S. H. \& Brown, P. J. (1967). Philos. Mag. 16, 521-542.
Martínez-Ripoll, M. \& Brauer, G. (1973). Acta Cryst. B29, 2717-2720.
Owens, D. R. (1976). Mineral Science Laboratory Rep. No. MRP/MSL 76-305 (TR).
Pearson, W. B. (1972). The Crystal Chemistry and Physics of Metals and Alloys, pp. 3, 53, 66, 718. Toronto: John Wiley.
Raman, A. \& Ghassem, H. (1973). J. Less-Common Met. 30, 185-197.
Smart, M. L., Calvert, L. D. \& Taylor, J. B. (1978). To be published.
Taylor, J. B., Calvert, L. D., Utsunomiya, T., Wang, Y. \& Despault, J. G. (1977). J. Less-Common Met. 57, $51-$ 63.

Wang, Y., Calvert, L. D., Gabe, E. J. \& Taylor, J. B. (1977). Acta Cryst. B33, 3122-3125.

Wang, Y., Calvert, L. D., Gabe, E. J. \& Taylor, J. B. (1978). Acta Cryst. B34, 1962-1965.

Wang, Y., Gabe, E. J., Calvert, L. D. \& Taylor, J. B. (1976). Acta Cryst. B32, 1440-1445.

Wang, Y., Gabe, E. J., Calvert, L. D. \& Taylor, J. B. (1977). Acta Cryst. B33, 131-133.

Yoshihara, K., Taylor, J. B., Calvert, L. D. \& Despault, J. G. (1975). J. Less-Common Met. 41, 329337.

[^0]: * NRCC No. 16725.
 \dagger To whom correspondence should be addressed.

[^1]: * Lists of structure factors for both forms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33488 (13 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Fixed to establish origin.
 \dagger Held constant.
 \ddagger Weighted average values.

